首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8831篇
  免费   1183篇
  国内免费   5520篇
  2024年   20篇
  2023年   352篇
  2022年   412篇
  2021年   481篇
  2020年   602篇
  2019年   701篇
  2018年   663篇
  2017年   659篇
  2016年   614篇
  2015年   618篇
  2014年   606篇
  2013年   754篇
  2012年   618篇
  2011年   577篇
  2010年   498篇
  2009年   659篇
  2008年   579篇
  2007年   676篇
  2006年   576篇
  2005年   517篇
  2004年   472篇
  2003年   460篇
  2002年   359篇
  2001年   337篇
  2000年   304篇
  1999年   310篇
  1998年   236篇
  1997年   214篇
  1996年   223篇
  1995年   204篇
  1994年   177篇
  1993年   137篇
  1992年   131篇
  1991年   107篇
  1990年   113篇
  1989年   107篇
  1988年   80篇
  1987年   61篇
  1986年   50篇
  1985年   43篇
  1984年   46篇
  1983年   12篇
  1982年   54篇
  1981年   24篇
  1980年   25篇
  1979年   26篇
  1978年   9篇
  1977年   8篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Laboratory microcosms were used to: i) measure the effects of soil moisture on survival of Steinernema riobravis and ii) investigate the suitability of using microcosms to study motility and survival of these nematodes. Nematodes recovered from soil contained in petri dishes declined by more than 95% during 7 days, whereas nematodes recovered from the inner surfaces of dishes increased 35-fold. After 7 days in dishes, >20 times as many nematodes were recovered from dish surfaces than from soil. Nematodes exhibited a negative geotropism; greater numbers of nematodes were recovered from the lid surfaces than from the surfaces of dishes. Survivorship of nematodes in soil in plastic centrifuge tubes was somewhat greater than in petri dishes, and fewer nematodes ascended above the soil line in tubes than dishes. Downward migration of nematodes was inversely related to soil column diameter, possibly due to relatively unimpeded movement along container surfaces. An assay was developed by which nematodes were rinsed from the inner surfaces of centrifuge tubes into the soil. The resulting slurry was then processed on Baermann trays to recover motile nematodes. Nematode survival in soil in centrifuge tubes was higher at soil moistures between 2-4% than at lower (0.5-1.0%) and higher (4.0-12.0%) moisture levels. Survival of S. riobravis may be enhanced by quiescence induced by moisture deficits.  相似文献   
112.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   
113.
114.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   
115.
Modeling the temperature response of nitrification   总被引:3,自引:2,他引:1  
To model nitrification rates in soils, it is necessary to have equations that accurately describe the effect of environmental variables on nitrification rates. A variety of equations have been used previously to describe the effect of temperature on rates of microbial processes. It is not clear which of these best describes the influence of temperature on nitrification rates in soil. I compared five equations for describing the effects of temperature on nitrification in two soils with very different temperature optima from a California oak woodland-annual grassland. The most appropriate equation depended on the range of temperatures being evaluated. A generalized Poisson density function best described temperature effects on nitrification rates in both soils over the range of 5 to 50 °C; however, the Arrhenius equation best described temperature effects over the narrower range of soil temperatures that normally occurs in the ecosystem (5 to 28 °C). Temperature optima for nitrification in most of the soils were greater than even the highest soil temperatures recorded at the sites. A model accounting for increased maintenance energy requirements at higher temperatures demonstrates how net energy production, rather than the gross energy production from nitrification, is maximized during adaptation by nitrifier populations to soil temperatures.  相似文献   
116.
云南高黎贡山蚤类的生态区系   总被引:16,自引:2,他引:14  
本文报道了1985年以来对我甸横断山南端高黎贡山东、西坡蚤类生态区系的调查及研究结果。共发现蚤类5科23属47种(亚种)。文中对该山脉蚤类在不同森林植物带的群落结构、种的多样性及均匀度,各种蚤的栖境幅度、宿主多样性进行了陈述和比较,并对蚤类的区系特征、特有种的区系划分等问题进行了讨论。  相似文献   
117.
Little is known about deep soil heterogeneity, or its relationship with fine root distribution. Beneath a mature, closed-canopy forest of eastern Amazonia, and the pastures and secondary forests that are derived from this forest, soil soft spots and hollow chambers occur to at least 9 meters depth. We measured the vertical distribution of these soil patches, and compared chemical characteristics, mycorrhizal infection, and root density of soil soft spots with the surrounding matrix of more homogeneous soil. Soil soft spots and chambers varied little with depth, but occupied the greatest soil volume (0.8 to 1.2%) from 4 to 6 m depth in the mature forest. Soft spots had lower pH, P availability and arbuscular mycorrhizal infection, and higher K availability than surrounding soil. Root length density was 2 to 15 times higher in soft spots than in surrounding soil. In the pastures, roots were found only in soil soft spots at depths of >3 m. Pastures and secondary forest had more soil chambers in the upper meter of soil than mature forest, but were otherwise indistinguishable in their patterns of deep soil heterogeneity. Soil soft spots may be vestiges of cutter ant nest chambers, while hollow chambers are cutter ant chambers and root channels. Chambers may act as conduits for root penetration and water penetration to deep soil.Abbreviations AM arbuscular mycorrhizae - RLD root length density (root length per unit of soil volume)  相似文献   
118.
We studied the effects of mycorrhizal pitch pine (Pinus rigida) roots on litter decomposition, microbial biomass, nematode abundance and inorganic nutrients in the E horizon material of a spodosolic soil, using field microcosms created in a regenerating pitch pine stand in the New Jersey Pinelands. Pine roots stimulated litter decomposition by 18.7% by the end of the 29 month study. Both mass loss and N and P release from the litter were always higher in the presence of roots than in their absence. Nutrient concentrations in decomposing litter were similar, however, in the presence and absence of roots, which suggests that the roots present in the with-root treatment did not withdraw nutrients directly from the litter. The soil was slightly drier in the presence of roots, but there was no discernible effect on soil microbial biomass. The effects of roots on soil extractable inorganic nutrients were inconsistent. Roots, however, were consistently associated with higher numbers of soil nematodes. These results suggest that, in soils with low total C and N contents, roots stimulate greater activity of the soil biota, which contribute, in turn, to faster litter decomposition and nutrient release.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.  相似文献   
119.
A telescopic method for photographing within 8×8 cm minirhizotrons   总被引:1,自引:0,他引:1  
The volatile organic compounds produced during a sequence of soil incubations under controlled conditions, with either added NH4 +-N or NO3 --N, were collected and identified. The nature and relative amounts of the volatile organic compounds produced by the microorganisms in the soils were remarkably reproducible and consistent.  相似文献   
120.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号